我公司拥有所有研究报告产品的唯一著作权,当您购买报告或咨询业务时,请认准“智研钧略”商标,及唯一官方网站智研咨询网(www.chyxx.com)。若要进行引用、刊发,需要获得智研咨询的正式授权。
- 报告目录
- 研究方法
智研咨询发布的《2023-2029年中国工业大数据行业市场经营管理及发展趋势研究报告》共九章。首先介绍了工业大数据行业市场发展环境、工业大数据整体运行态势等,接着分析了工业大数据行业市场运行的现状,然后介绍了工业大数据市场竞争格局。随后,报告对工业大数据做了重点企业经营状况分析,最后分析了工业大数据行业发展趋势与投资预测。您若想对工业大数据产业有个系统的了解或者想投资工业大数据行业,本报告是您不可或缺的重要工具。
本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。
第一章工业大数据概述
1.1 工业大数据相关概念
1.1.1 工业大数据的定义
1.1.2 工业大数据的属性
1.1.3 工业大数据的边界
1.2 工业大数据与相关概念的关系
1.2.1 与大数据的关系
1.2.2 与智能制造的关系
1.2.3 与工业互联网的关系
1.3 工业大数据的产生
1.3.1 数据类型
1.3.2 产生主体
1.3.3 发展趋势
1.4 工业大数据应用价值
1.4.1 推动工业化进程
1.4.2 促进信息化发展
1.4.3 推进新工业革命
1.4.4 推动制造业升级
第二章2018-2022年中国工业大数据发展驱动因素分析
2.1 政策因素
2.1.1 大数据产业政策汇总分析
2.1.2 促进大数据产业发展纲要
2.1.3 大数据标准化白皮书分析
2.1.4 各省大数据政策发布数量
2.1.5 国家工业大数据政策回顾
2.1.6 工信部工业大数据政策
2.1.7 工业大数据发展指导意见
2.2 经济因素
2.2.1 宏观经济概况
2.2.2 工业运行情况
2.2.3 经济转型升级
2.2.4 宏观经济展望
2.3 信息化发展
2.3.1 信息基础设施建设
2.3.2 信息消费发展现状
2.3.3 网信产业发展状况
2.3.4 信息技术研发创新
2.3.5 区域信息化的水平
2.4 两化融合
2.4.1 两化融合发展水平
2.4.2 两化融合区域分布
2.4.3 两化融合发展规划
第三章2018-2022年中国大数据产业发展分析
3.1 大数据产业链构成分析
3.1.1 大数据产业链结构
3.1.2 大数据产业链领域
3.1.3 产业链价值流动方向
3.2 2018-2022年中国大数据产业发展综述
3.2.1 大数据产业概念分析
3.2.2 大数据发展的必然性
3.2.3 大数据产业驱动主体
3.2.4 大数据产业发展阶段
3.2.5 数字经济的发展水平
3.2.6 大数据总体市场规模
3.2.7 地区大数据产业联盟
3.3 2018-2022年大数据产业竞争格局
3.3.1 产业竞争主体分类
3.3.2 竞争企业资本层次
3.3.3 产业百强企业统计
3.3.4 创新场景应用服务商
3.3.5 互联网企业布局状况
3.3.6 大数据应用领域竞争
3.3.7 产业竞争趋势展望
3.4 2018-2022年中国大数据市场供需分析
3.4.1 大数据市场供给结构介绍
3.4.2 主要行业大数据需求状况
3.4.3 企业大数据的应用及需求
3.4.4 大数据细分领域需求场景
3.4.5 大数据热点领域需求分析
3.4.6 数据小型机市场需求分析
3.5 中国大数据产业发展存在的问题
3.5.1 面临挑战分析
3.5.2 核心技术薄弱
3.5.3 数据相关问题
3.5.4 数据安全问题
3.5.5 人才供需问题
3.6 中国大数据产业发展的策略建议
3.6.1 推进研发应用
3.6.2 避免过度建设
3.6.3 提高数据安全
3.6.4 地区发展思路
3.6.5 推动标准建设
3.6.6 打破信息孤岛
第四章2018-2022年中国工业大数据发展分析
4.1 工业大数据发展综述
4.1.1 产业链条分析
4.1.2 产业发展历程
4.1.3 产业发展周期
4.1.4 产业发展现状
4.2 2018-2022年中国工业大数据市场运行分析
4.2.1 市场发展规模
4.2.2 用户行业结构
4.2.3 产品结构分析
4.2.4 市场用户类型
4.2.5 市场投资状况
4.2.6 市场发展形势
4.3 中国工业大数据发展存在的问题
4.3.1 工业数据资源不够丰富
4.3.2 工业数据资产管理滞后
4.3.3 工业数据孤岛普遍存在
4.3.4 工业数据应用不够深入
4.4 中国工业大数据发展对策建议
4.4.1 提升工业大数据平台能力建设
4.4.2 加强工业大数据管理体系建设
4.4.3 持续完善工业大数据标准体系
4.4.4 探索工业大数据创新应用示范
第五章2018-2022年工业大数据架构及技术分析
5.1 工业大数据参考架构
5.1.1 数据参考架构
5.1.2 技术参考架构
5.1.3 平台参考架构
5.2 工业大数据管理技术分析
5.2.1 工业大数据的采集技术
5.2.2 多源异构数据管理技术
5.2.3 多模态数据的集成技术
5.2.4 工业大数据技术的趋势
5.3 工业大数据分析技术介绍
5.3.1 时序模式分析技术
5.3.2 工业知识图谱技术
5.3.3 多源数据融合分析
5.4 工业大数据标准体系建设
5.4.1 工业大数据标准化的基础
5.4.2 工业大数据标准体系框架
5.4.3 工业大数据标准明细汇总
5.4.4 工业大数据重点标准描述
第六章2018-2022年工业大数据与工业4.0发展关系
6.1 全球主要国家工业4.0发展战略
6.1.1 美国
6.1.2 德国
6.1.3 法国
6.1.4 中国
6.2 工业4.0发展概况
6.2.1 工业4.0基本内涵
6.2.2 工业4.0产生背景
6.2.3 工业4.0发展历程
6.2.4 中国工业4.0优势
6.3 工业4.0落地战略分析
6.3.1 工业4.0架构
6.3.2 信息网络系统
6.3.3 核心系统集成
6.3.4 大数据利用分析
6.4 2018-2022年中国工业4.0发展进程
6.4.1 工业4.0重点发展领域
6.4.2 工业4.0发展模式分析
6.4.3 推动工业4.0发展举措
6.4.4 工业4.0的相关技术
6.4.5 工业4.0未来发展蓝图
6.5 中国制造2025解读分析
6.5.1 中国制造2025重点任务
6.5.2 中国制造2025重点领域
6.5.3 工业4.0与中国制造2025
6.6 工业大数据是中国工业4.0的重要部分
6.6.1 工业大数据是工业4.0的基础
6.6.2 工业大数据对工业4.0的作用
6.6.3 工业4.0对工业大数据的需求
6.6.4 工业4.0中工业大数据的应用
第七章工业大数据的应用场景及应用价值剖析
7.1 工业大数据的主要应用领域
7.1.1 在设计领域的应用
7.1.2 优化生产过程中
7.1.3 预测产品需求
7.1.4 优化工业供应链
7.1.5 强化工业绿色发展
7.2 工业大数据的典型应用场景
7.2.1 智能化设计
7.2.2 智能化生产
7.2.3 网络化协同制造
7.2.4 智能化服务
7.2.5 个性化定制
7.3 工业大数据企业应用案例分析
7.3.1 福特公司
7.3.2 恒逸石化
7.3.3 海尔集团
7.3.4 金风科技
7.4 工业大数据的应用价值分析
7.4.1 优化企业现有业务
7.4.2 促进企业升级转型
7.4.3 促进中小企业创新
第八章工业大数据相关行业发展状况
8.1 智能制造
8.1.1 智能制造发展阶段
8.1.2 智能制造发展特征
8.1.3 智能制造发展规模
8.1.4 智能制造产业集群
8.1.5 智能制造试点项目
8.1.6 智能制造发展态势
8.2 智能装备
8.2.1 智能装备运行特征
8.2.2 智能装备产业布局
8.2.3 智能装备竞争格局
8.2.4 智能装备项目动态
8.2.5 智能装备发展机遇
8.2.6 存在的问题及对策
8.3 智能工厂
8.3.1 智能工厂基本框架
8.3.2 智能工厂基本特征
8.3.3 智能工厂建设模式
8.3.4 智能工厂解决方案
8.3.5 智能工厂建设现状
8.3.6 催生新业态新模式
8.3.7 智能工厂发展趋势
8.4 工业物联网
8.4.1 全球工业物联网规模
8.4.2 国内工业物联网规模
8.4.3 工业物联网应用领域
8.4.4 工业物联网应用模式
8.4.5 工业物联网应用场景
第九章2023-2029年工业大数据投资前景及前景趋势展望
9.1 工业大数据产业投资方向
9.1.1 工业大数据平台企业
9.1.2 开发工业APP的企业
9.1.3 工业机理模型建设企业
9.1.4 具有制造基因的企业
9.1.5 产业投资价值企业
9.2 工业大数据行业发展前景展望
9.2.1 大数据行业发展趋势
9.2.2 工业大数据应用前景
9.2.3 工业大数据发展趋势
9.3 2023-2029年中国工业大数据行业预测分析
9.3.1 2023-2029年中国工业大数据行业影响因素分析
9.3.2 2023-2029年中国大数据产业规模预测
9.3.3 2023-2029年中国工业大数据市场规模预测
◆ 本报告分析师具有专业研究能力,报告中相关行业数据及市场预测主要为公司研究员采用桌面研究、业界访谈、市场调查及其他研究方法,部分文字和数据采集于公开信息,并且结合智研咨询监测产品数据,通过智研统计预测模型估算获得;企业数据主要为官方渠道以及访谈获得,智研咨询对该等信息的准确性、完整性和可靠性做最大努力的追求,受研究方法和数据获取资源的限制,本报告只提供给用户作为市场参考资料,本公司对该报告的数据和观点不承担法律责任。
◆ 本报告所涉及的观点或信息仅供参考,不构成任何证券或基金投资建议。本报告仅在相关法律许可的情况下发放,并仅为提供信息而发放,概不构成任何广告或证券研究报告。本报告数据均来自合法合规渠道,观点产出及数据分析基于分析师对行业的客观理解,本报告不受任何第三方授意或影响。
◆ 本报告所载的资料、意见及推测仅反映智研咨询于发布本报告当日的判断,过往报告中的描述不应作为日后的表现依据。在不同时期,智研咨询可发表与本报告所载资料、意见及推测不一致的报告或文章。智研咨询均不保证本报告所含信息保持在最新状态。同时,智研咨询对本报告所含信息可在不发出通知的情形下做出修改,读者应当自行关注相应的更新或修改。任何机构或个人应对其利用本报告的数据、分析、研究、部分或者全部内容所进行的一切活动负责并承担该等活动所导致的任何损失或伤害。
01
智研咨询成立于2008年,具有15年产业咨询经验
02
智研咨询总部位于北京,具有得天独厚的专家资源和区位优势
03
智研咨询目前累计服务客户上万家,客户覆盖全球,得到客户一致好评
04
智研咨询不仅仅提供精品行研报告,还提供产业规划、IPO咨询、行业调研等全案产业咨询服务
05
智研咨询精益求精地完善研究方法,用专业和科学的研究模型和调研方法,不断追求数据和观点的客观准确
06
智研咨询不定期提供各观点文章、行业简报、监测报告等免费资源,践行用信息驱动产业发展的公司使命
07
智研咨询建立了自有的数据库资源和知识库
08
智研咨询观点和数据被媒体、机构、券商广泛引用和转载,具有广泛的品牌知名度
品质保证
智研咨询是行业研究咨询服务领域的领导品牌,公司拥有强大的智囊顾问团,与国内数百家咨询机构,行业协会建立长期合作关系,专业的团队和资源,保证了我们报告的专业性。
售后处理
我们提供完善的售后服务系统。只需反馈至智研咨询电话专线、微信客服、在线平台等任意终端,均可在工作日内得到受理回复。24小时全面为您提供专业周到的服务,及时解决您的需求。
跟踪回访
持续让客户满意是我们一直的追求。公司会安排专业的客服专员会定期电话回访或上门拜访,收集您对我们服务的意见及建议,做到让客户100%满意。